"数理论坛"第45期:High-resolution numerical methods for hyperbolic conservation laws

发布人:slxy发表时间:2017-10-18点击:

人:邱建贤(厦门大学教授)

报告人简介:邱建贤,国际著名刊物“Journal of Computational Physics” (计算物理)编委,原南京大学数学系教授、博士生导师、信息与计算科学专业主任,现厦门大学数学科学学院闽江学者、特聘教授,博士生导师,福建省数学建模与高性能科学计算重点实验室常务副主任。SCI刊物《Numerical Mathematics: Theory, Methods and Applications》、《Advances in Applied Mathematics and Mechanics》编委,中国计算数学学会常务理事、福建省数学学会常务理事。在间断Galerkin有限元(DG)和加权本质无振荡(WENO)方法的研究及其在计算流体力学及工程界的应用方面取得了出色的成果,目前已发表了七十多篇SCI论文,得到了国内外同行的高度评价。主持两项国家自然科学基金重点项目。

报告时间:1027日(周五)下午1430-1530

报告地点:suncitygroup太阳新城二楼报告厅212

要:Hyperbolic conservation laws and convection dominated problems play an important role arise in applications as diverse as compressible and incompressible flows, aerodynamics, aero-acoustics, MHD and electromagnetism among many others. This is why devising robust, accurate and efficient methods for numerically solving these problems is of considerable importance and as expected, has attracted the interest of many researchers and practitioners. The need for such methods prompted and sustained the remarkable development of the so-called high-resolution finite difference, finite volume and finite element methods for non-linear hyperbolic systems. Essentially non-oscillatory (ENO), weighted ENO (WENO) methods and Runge-Kutta discontinuous Galerkin (RKDG) methods play a very important role in such developments. In this presentation, we will give a survey of WENO and RKDG methods.